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The equations governing the boundary layer on a spherical gas bubble rising 
steadily through liquid of small viscosity are derived. These equations are linear 
and are solved in closed form. The boundary layer separates at  the rear stagnation 
point of the bubble to form a thin wake, whose structure is determined. Thus the 
drag force can be calculated from the momentum defect. The value obtained is 
lfnuUp, where u is the bubble radius and U the terminal velocity, and this 
agrees with the result of Levich (1949) who argued from the viscous dissipation 
in the potential flow round the bubble. The next term in an expansion of the drag 
in descending fractional powers of R is found and the results compared with 
experiment. 

1. Introduction 
In  a recent paper (Moore 1959) the author proposed a model of the flow past 

a rising spherical gas bubble a t  large Reynolds numbers R. The flow was every- 
where only slightly disturbed from the irrotational flow past a sphere, and there 
was a thin boundary layer at  the bubble surface in which the perturbation to the 
basic irrotational flow varied rapidly to allow the stress to change from 
its value O(R-l)  in the irrotational flow to the value zero required by the 
physical conditions at the bubble surface. It was further suggested that the drag 
force on the bubble could be calculated from the normal viscous stress of the 
irrotational flow and the result for the drag coefficient 

C, = 32/R (1.1) 

was obtained, where R = 2aUp/,u, (1.2) 

where the bubble of radius u rises with velocity U ,  p is the density and ,I& the 
viscosity of the liquid surrounding the bubble. However, soon after the paper 
was published, Dr G. K. Batchelor pointed out to the author that if the drag 
was calculated from the total viscous dissipation in the region of irrotational flow, 
a different result 

is achieved and suggested that the discrepancy was due to the neglect of pressure 
forces in the boundary layer. It was subsequently discovered that the result 
(1.3) had been obtained by the dissipation method by Levich (1919) and by 
Ackeret ( 1952). 

In  the present paper an examination of the boundary-layer equations is 
undertaken with a view of deciding between (1.1) and (1.3).  In 92 Batchelor’s 
suggestion is shown to be correct, since it is found that the pressure forces are 

C, = 48/R (1.3) 
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O(R-l)  and so make a significant contribution to CD. The boundary-layer 
equations are linear and are solved analytically. The perturbation to the velocity 
field is O(R-*) and the solution is well behaved except in the vicinity of the rear 
stagnation point, where the velocity and pressure fields have singularities. 

The flow in the region of the rear stagnation point of the bubble cannot be 
described by a boundary-layer theory. An examination of the exact equations 
undertaken in 3 3 shows however that viscous forces are unimportant in this 
region so that the flow is governed by the iiiviscid equations. Moreover, the 
regions of validity of the boundary-layer equations and the inviscid approxima- 
tion overlap and a matching procedure is possible. The determination of the flow 
in the rear stagnation region is simplified by the fact that the flow field is still 
only slightly disturbed from the potential flow.? 

The vorticity created by the action of the viscous stresses in the boundary 
layer is convected downstream of the bubble to form a ‘wake’ of breadth O(R-2). 
The perturbation velocity in this region is, however, only O(R-4) and it is clear 
that the wake would not be observable in practice. Thus it is important to see 
whether the predicted absence of a wake is confirmed by observation. Unfortu- 
nately no clear experimental evidence exists, but a discussion of that available 
is undertaken in 3 5. 
$ 4  is concerned with the drag force experienced by the bubble. Since an 

analytic solution for the rear stagnation region has not been found the drag 
cannot be calculated directly but must be found by a momentum argument. 
Agreement with Levich’s result is achieved and it is further shown, by extending 
the dissipation calculation to include the contribution from the boundary layer 
and wake, that 

The comparison of ( 1.4) with experiment is hampered by the onset of sensible 
distortion of the bubble from the spherical at  Reynolds numbers of about 100, 
at  which values the second term in (1.4) is not small compared to the first. Now 
the shape of the bubble is determined by the pressure field of the basic irrotational 
flow (Moore 1959) so that the amount of distortion is determined by the quantity 
pU2a/T ,  where T is the surface tension. Levich’s result shows that U cc pga2/,u 
so that the distortion is proportional to R%M+, where M = qp4/pT3 is a dimension- 
less group, introduced by Haberman & Morton (1953), which depends only on 
the liquid properties. The value of R at which, say, 10 yo distortion will occur 
is thus a function of the liquid properties (for bubbles in water it is about 200) 
and is a decreasing function of M .  In 9 5 a comparison of theory and experiment 
is attempted for the two liquids with smallest M for which data are available. 
The agreement is fair and suggests that (1.4) represents some improvement on 
Levich’s original result. 

A recent analysis of the problem by Chao (1963), which appeared whilst the 
work presented here was being written up, takes a view conflicting with the pre- 
sent analysis. Chao investigates the boundary layer and arrives at an equation 
for the surface component of the velocity in agreement with the author’s (2.28) 

-f That this might be the case was suggested to  the author by Dr G. K. Batchelor. 



The boundary layer o n  a spherical gas bubble 163 

derived below, but the neglect of curvature terms in the equation for the radial 
component leads to the conclusion that pressure forces are unimportant in the 
boundary layer. Thus incorrect results in agreement with the author's earlier 
theory are obtained. 

2. The boundary layer 
Adopt spherical polar co-ordinates at the centre of the sphere with the axis 

02 pointing upsteam parallel to the undisturbed velocity U a t  infinity. Then if 
q: and qi  are the velocity components in this system the Navier-Stokes equations 
and the equation of continuity are 

where v V i ,  v V ;  represent the viscous forces, and 

and 

It is clear that (2.1), (2.2) and (2.3) are satisfied 
field 

(3.1) 

(2.3) 

(2.3) 

(2.4) 

(2.5) 

by the irrotational velocity 

(2.6) 

and this velocity field satisfied the conditions at infinity and the condition that 
the normal velocity component should vanish on the sphere. However (2.6) and 
(2.7) do not give a vanishing tangential stress pro a t  the bubble surface and, as 
argued by Moore (1959), this will lead at  large Reynolds numbers to a boundary 
layer a t  the bubble surface in which the stress falls to zero. 

It is convenient to write 9; = 4s + 40 ,  (2.8) 

~i = Pr + 4;. (2.9) 
PI = F+P,  (2.10) 

and one finds that qo, qr satisfy the equations 

(2.11) 

(2.13) 

11-2 
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The boundary conditions to be satisfied are 

qr,qe+ 0 as r - f w ,  

q, = 0 on r = a, 

and p,, = ,u = 0 on r = a,. 

If the boundary-layer thickness is of order 6 then, symbolically, one has 

- a = o($, 
C7r 

where the operator is applied to qs and q,, and (2.16) becomes 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

Now the left-hand side of (2.18) is O( 1)  so that this equation shows that q, = O(6) 
and hence, from the continuity equation (2.13), qr = 0(a2). In  the boundary-layer 
region one also has ?js = O( l ) ,  ij, = O(6) (since 4, = 0 on r = a )  and 2qr/ar = O( 1). 
Thus the orders of magnitude of the various terms in (2.11) and (2.12) are 

1 ap 1' 
6+ 6+ 6+ 82+ 62+ 8 2 +  63 + 6 2 +  6 2  = - - - + ~ 

p r M  6' 
(2.19) 

(2.20) 1 3P 62+62+62+82+6+63+63+62 = - - - - + 1 ' .  
P 

It follows from (2.19) that viscous and inertia forces will balance if 

6 2  = O(V). (2.21) 

The order of magnitude of the pressure term in (2.19) must now be determined. 
If q, --f 0 exponentially rapidly as the outer edge of the boundary layer is ap- 
proached one sees from (2.11) that the pressure variations satisfy the equation 

(2.22) 

It follows from (2.6) that the term in brackets is O(6) in the boundary layer so 
that, since q, = 0(a2), p = O(a3) at the outer edge of the boundary layer. Further- 
more, (2.20) shows that appr = O(6) so that, in view of the above argument, one 

p = O(82) (2.23) 
has 

in the boundary layer. Thus, as pointed out by Batchelor privately, p contributes 
to the drag on the bubble to the same order as the viscous stresses-a fact which 
was overlooked by the author (Moore 1959). 

If one retains only the terms of O(6) on the left-hand side of (2.11) one has 

(2.24) 
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Let q* = USu, 
r - u  = a8y, 

(2.25) 
(2.26) 

(2.27) 

where R is the Reynolds number of the flow; then, on substituting the values 
assumed by P o ,  4, in the boundary layer, (2.24) becomes 

(2.28) 

with the boundary conditions 

u = 0 where H = 0 for all y, (2.29) 
u + O  as y-PCO, 0 < 8 6 ~ ,  (2.30) 

?u/ay = 3sinO on y = 0, 0 < 0 6 n, (2.31) 

where (2.31) follows directly from (2.18). 
The solution of (2.28) can be found by standard integral transform methods. 

We find u = - 6 sin 19 x&f(y/2x*), (2.32) 
where 

Clearly xh plays the role of the boundary-layer thickness. One may show that 
x --f 4 as 8 -+ 0 and that x > 0 for 0 < 8 6 T so that the boundary layer starts 
smoothly at B = 0 and is well behaved for 0 6 B < T.  Near B = 0 the boundarmy 
layer has a constant thickness and this resembles the boundary layer near the 
forward stagnation point of a solid cylinder. The nature of the solution near 
6' = T will be discussed below. 

The pressure and radial component of velocity may now be determined. Retain- 
ing the most significant terms in (2.2 I )  yields 

f ( t )  = n-4 exp ( - P) - t erfc t ,  (2.33) 
and ~ ( 6 ' )  = $cosec46 ' ($-co~B+~ ~ 0 ~ ~ 6 ) .  (2.34) 

so that, since p = O(S3) as y --f co, 

p = -3pU2S2sin0 u(y ' ,O)dy' .  I, 
Substituting for u in this integral one finds that 

p = 36pUU2S2sinBx(0) Jm f ( t )  dt. 
L112X3 

(2.35) 

(6.36) 

(2.37) 

If one writes q, = U P v ,  the equation of continuity (2.13) and the boundary 
condition v = 0 at y = 0 show that 

where h(8) = 6si11~8x:. (2.39) 

This completes the determination of the boundary-layer solution. 

t This is identical with Chao's boundary-layer equation, and the solutions arc! in 
agreement), allowing for an error in Chao's boundary condition. 
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3. The nature of the flow near the rear stagnation point 

except in the neighbourhood of O = m. Now 
It is easy to verify that the solution for u, v and p given in $ 3 is well behaved 

so that, on writing 4 = m - 0, we have 

(3.1) 

(3.3) 

Thus qo N O(S/$) as 4 --f 0, so that the boundary-layer solution is invalid for 
small 4. This is to be expected, since the flow must turn sharply as it approaches 
the rear axis of symmetry and the assumption that a / M  < a/& involved in the 
boundary-layer approximation will break down. 

As a first step towards determining the nature of the flow in this region it is 
profitable to re-examine the orders of magnitude, according to the boundary- 
layer approximation, of the terms in the exact equations of motion (2.11) and 
(2.12). The Polutions obtained for p and v show that p = O(S2/q52), 9; = O(P/5h4) 
as 4 --f 0 ;  furthermore, since x*(O) plays the role of the boundary-layer thickness, 
a/& = O(cj2/S) when applied to qr, qo and p .  Using these estimates and noticing 
that ?jo = O($) ,  ?jr = O(S/q52) in the region in question, one has for the orders of 
the terms in (3.11) and (2.12), 

-+-+-+-+-+$.+f-+~=-+l, 6 6 6 8 2  8 2  83 62 6 2  62 

9 f q P @3 P 43 43 43 (f+$+$) (3.3) 

and (3.4) 

The terms underlined are those retained in the boundary-layer approximation 
of $ 2  and it can be seen that the retained inertia terms are larger than the 
neglected inertia terms in both (3.3) and (3.4) so long as q5 $ Sk. Furthermore, 
if 6* < cj < 1 the viscous terms are negligible compared to the inertia terms, eince 
the viscous terms behave like S43 in (3.3) and are O(62/q52) in (3.4) in comparison 
with inertia terms O(S/cj) and O(6) respectively. 

These estimates show that there is a range of values of 4, namely B i  < 4 < 1, 
in which the perturbation to the potential flow is still confined to a thin boundary 
layer at the bubble surface and is still given correctly by (3 .2) ,  but in which viscous 
forces are negligible. For smaller values of q5 the assumptions underlying the 
boundary-layer equations will fail. However, in view of the inertial character 
of the dynamics in the final stages of the boundary layer: it  is plausible to suppose 
that viscous forces will remain unimportant in determining the perturbation 
throughout the region near the rear stagnation point. Thus it will be assumed 
that very near the rear stagnation point the relevant approximation is that of a 
small departure from the potential flow ( (To, ?jv) where the departure is governed 
by the full inviscid equations, no restrictions being placed on the relative orders 
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of magnitude of 31% and aji36. Moreover, since the flow is assumed inviscid if 
1 9 # and the boundary-layer approximation is valid if q5 9 Ci8, the boundary- 
layer approximation and the inviscid approximation have a common region of 
validity and a matching procedure may be envisaged. The assumption that the 
flow in the stagnation region is inviscid will be examined a posteriori. 

Now in an axisymmetric steady inviscid flow the dynamics may be summarized 
by the two equations 

w/rn = B(@) (3.5) 

and p + i p u 2  + C($) = 0,  (3.6) 

where w is the azimuthal component of the vorticity, m t,he distance from the 
axis of symmetry, and y? the Stokes stream function and where B(@) and C($) 
are functions to be determined. In  general these equations are not very fruitful, 
since the real problem is to determine $. However, in the present case, we can 
determine the vorticity w of the perturbation flow (qo, qr) to the first order by 
taking y9 to be the known stream function '$ of the basic potential flow (qo, qr).  
Thus in (3.5) we replace B(@) by B('$). In  physical terms, the approximation 
amounts to assuming that the distortion of the potential flow by the perturbation 
has only a second-order effect on the convection of the vorticity created in the 
boundary layer, so that this vorticity is, in effect, convected passively. 

The function B ( q )  will be determined by insisting that (3 .5 )  yields the correct 
vorticity in the overlap region & Q # < 1. The vorticity in the boundarylayer is 
- i3qs/3r and from (3.2) one has 

Thus, bearing in mind that, to the order of the approximation, 

m = a#, (3.8) 

one has 

The stream function of the potential flow is 

(3.9) 

(3.10) 

so that in the rear stagnation region 
- 9 = +U&ja2#2. (3.1 1)  

Equations (3.11) and (3.9) together show that in the final stage of the boundary 
layer ojmis, indeed, constant on streamlines of the potential flow and they further 
imply that 

(3.12) 

The function C($) may also be determined by matching. Since Bernoulli's 
equation applies in the overlap region, 

(3.13) 
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and q,., qo are known from the boundary-layer solution. Thus 

C(iQ = -Pi& 5% + o(&2), (3.14) 

so that, on using the explicit solution (3.2) for qo in the final stage of the boundary 

Thus, since the pressure and vorticity are known a t  every point of the stagnation 
region, the details of the flow there may, in principle, be calculated. As a start, 
one may estimate the orders of magnitude of the relevant quantities. 

The vorticity produced in the boundary layer will be confined to a region 
bounded by the. sphere’s surface and that stream surface of the potential flow 
which is at the outer edge of the boundary layer in the matching region. In  the 
matching region this stream surface is characterized by 

r - a = ctO(S/q5z), (3.16) 

so that its equation is, by (3.10), 

( ~ - a ) # ~  = &G, (3.17) 

where G is a constant of order unity. Thus when the stream surface makes a 
finite angle with the bubble surface, so that r - a = O(aq5), both r - a and aq5 are 
aO(69). Thus the stagnation region is of size O(2i-A). 

To determine the velocities of the perturbation one may remark that the vor- 
ticity is O(R-*) and that the velocities must change significantly in distances of 
O(R-k) so that the velocities are O(R-g), which is smaller than the velocities of the 
potential flow by a factor R-h when R is large. Thus the streamlines are only 
slightly displaced by the perturbation, as assumed. Furthermore, the viscous 
forces are O(R-l) whilst the inertia forces are O(R-8) so that the neglect of viscous 
forces in the stagnation region is self-consistent. 

To discuss the stagnation region in more detail one may introduce dimension- 
less co-ordinates z and s, where 

Y - a = a ,Sh  

and q5 = ss;. 

(3.18) 

(3.19) 

The curvature of the bubble wall will be unimportant in the stagnation region 
and one has effectively a local system of cylindrical polar co-ordinates. It is 
convenient to represent the velocities in terms of a dimensionless stream function 
$ such that 

(3.20) 

(3.21) 

and, since the azimuthal component of vorticity is ( 3qs/az - aqB/as) 
must satisfy the equation 

@ 

(3.32) 
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1+9 must also satisfy the boundary conditions 

@ = O(s2) as s -> 0, 

a $ p s  = 0 on 2 = 0, 
and the conditions 

(3.23) 

(3.21) 

(3.25) 

since the perturbations are of a smaller order in R outside the stagnation region. 
The boundary condition on the tangential stress of the perturbation is satisfied 
identically by any solution of the above system. 

Unfortunately the writer has not been able to solve the problem posed by 
equations (3.32) to (3.25) and thus the details of the flow in the stagnation region 
are unknown. 

However, it  seems reasonable to assume that a solution will exist and, fortu- 
nately, it  proves possible to calculate the drag force experienced by the bubble 
without such detailed knowledge. 

The vorticity created in the boundary layer will eventually be carried down- 
stream of the bubble to form a ‘wake’ and one may determine the orders of 
magnitude of the perturbation to the potential flow in the wake region by an 
argument similar to that employed for the stagnation region. When the stream 
surface bounding the vorticity distribution is effectively cylindrical with gener- 
ators parallel to the axis of symmetry, one has r--a = O(a), so that (3.17) shows 
that q5 = O(64). Thus the wake is of breadth O(R-4). The vorticity is thus also 
O(R-%) so that the axial component of the perturbation velocity is O(R-4). 
As has been mentioned in 8 1, the present theory predicts that the wake will be 
unobservable in practice. 

The details of the perturbation in the wake can be obtained without difficulty, 
since the streamlines of the potential flow are essentially parallel and the analogue 
of equation (3.22) is correspondingly simpler. Furthermore, the above estimates 
show that the viscous forces in the wake are O(R-l)  as compared to inertia forces 
of O(R-4) Thus the diffusing of the vorticity created in the boundary layer and 
thereafter convected by the potential flow may be neglected, a t  least in the initial 
stages of the wake development. In  fact, it  will be shown to be negligible until 
distances downstream of the bubble of O(rrRB) are reached, SO that the dynamics 
of the wake will be governed initially by equations (3.5) and (3.6), where the 
functions B(p)  and G($) are as determined by the matching procedure. 

A further simplification becomes possible if one assumes, as is established 
below, that viscous forces are negligible at  downstream distances less than 
O(aRh). For then, since R B 1, there exists a range of distances d satisfying the 
inequality a < d < aR: a t  which the basic potential flow is essentially parallel 
and of constant velocity U and the wake is still subject to inviscid dynamics. 
Adopting cylindrical polar co-ordinates m and x where, as above, m is distance 
from the axis of symmetry and x is distance downstream from the bubble centre 
measured along the axis of symmetry, the stream function of the essentially 
parallel basic potential flow is 

@ = &Urn2. (3.26) 
- 
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If qm and qz are the components of the perturbation velocity, the perturbation 
vorticity is - i3qzl,ji3,m (the other contribution is negligible since x gradients are 
small) so that from (3.6) 

(3.27) 

where the function B is as determined by the matching procedure. Moreover 

q,+O as m + m ,  (3.28) 

and using this boundary condition and the form for B given in (3.12) one has 

qs = - 6 UcY{n-3 exp ( - a2) - a erfc a}, (3.29) 

where a is defined by 

(3.30) 

When viscous diffusion can no longer be ignored the perturbation qx will be 
governed by the equation 

(3.31) 

and it is clear that, when the viscous and inertia terms balance, 

UIL - illa2R-&, (3.33) 

L = O(aR4). (3.33) 

where L is the distance downstream; thus 

Hence, as has been asserted, there exists a region intermediate to a and aR4 
in which, although the x derivative is too small to affect the velocity distribution 
significantly, the inertia term whose magnitude it controls is an order of 
magnitude larger than the viscous term. 

It will be convenient at this point to summarize, in order of magnitude terms, 
the complete flow pattern suggested by the above considerations. There is a 
boundary layer of thickness O(R-4) a t  the bubble surface in which the perturba- 
tion from the potential velocity field of (2.6) and (2.7) is O(R-*). At the rear 
of the bubble there is a region of linear size O(R-B) in which the vorticity from 
this boundary layer is transferred to the wake and in this region the departures 
from the potential flow are O(R-f). This stagnation region feeds the vorticity 
produced in the boundary layer into the wake, which is of diameter O(R-4) 
and in which the perturbation to the potential velocity field is O(R-*). Outside 
this combined boundary layer, stagnation region and wake system there is an 
irrotational secondary flow determined by the outflow from the system. The 
major contribution seems to be from the stagnation region; velocities are 
O(R-f)  and the region has area O(R-4.) so that the secondary flow velocities are 

The appearance of regions of size O(R-4) and associated velocity fields of 
O(R-#) is surprising, but seems to be due to the three-dimensional nature of the 

O(R-5). 
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flow. The powers of S* arise from the form of the stream function for three- 
dimensional stagnation flow and it may be seen that no such powers would arise 
in the corresponding solution for flow past a two-dimensional bubble. 

4. The drag on the bubble 
It is of interest to calculate the drag force experienced by the bubble. The 

obvious way to do this would be to integrate the normal stress over the bubble 
surface but unfortunately, as already stated in $3,  the author has not found it 
possible to determine the perturbation velocities (qs, qr) in the stagnation region 
in closed form. However, one may calculate the first approximation to the drag 
by a momentum argument. 

Let X and 8' be infinite plane surfaces normal to the axis of symmetry. X a 
large distance ahead of the bubble and X' a large distance behind. More precisely, 
one demands that the distance d downstream should satisfy a < d  < aR4 
ensuring that the flow is sensibly parallel but that viscous modifications to the 
wake are unimportant. Then (Landau & Lifshitz 1959, p. 72) the drag D is given 

by 
D = / p+Pu~x)~ f l - /  s' (P+PUq,)dK (4.1) 

where qx is the x component of the perturbation to the potential flow. This 
perturbation is determined from the outflow from the boundary layer and is thus 
O(R-8) but its exact value will not be required. Now Bernoulli's equation gives 
for the perturbation pressure 

p++pU2+pU.u+G($)  = 0, (4.2) 

where C($)  is zero except in the rear stagnation region, in the boundary layer, 
and in the wake. 

Thus p = -puq,- G($) + O(R-%) (4.3) 

a t  large axial distances from the bubble so that, on substituting in (4.1), one has 

Now C($)  is zero at every point of S, but it is non-zero at those parts of X' inside 
the wake, so that 

D = ly G($)dh'. (4.5) 

In the region of uniform streaming 
- 
y? = +Urnz, (4.6) 

so that (4.7) 

The function C($)  has been determined above by the matching process and on 
inserting C($) in (4.7) and performing the integration one finds that 

D = 18np1T2Pa2, (4.8) 
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so that, on using (2.27) to eliminate 6, one has 

D = ~~T,LLUCA, (4.9) 
in agreement with Levich (1949). 

Levich obtained his result by calculating the viscous dissipation in the poten- 
tial flow and this suggests that, since the boundary-layer structure has been 
determined, one might improve upon his result by including the dissipation from 
the boundary layer, stagnation region and wake, provided that it can be shown 
that the contribution from the external secondary potential flow, which is 
unknown, is negligible. 

The dissipation function is 

and since .u! = z.+u. 1 Z ?  (4.11) 

where ui is the potential flow and ui the perturbation to it, one has, exactly, 

or 

(4.13) 

(4.13) 

This expression is next transformed so that the irrotational nature of U can be 
~ 

used to simplify it. Thus 

@ ‘ = 0 + @ + 2 p  

(4.15) 
a 

0’ = 5 + @ + 4/l - -  ( U i V i j ) ,  
? X j  

where (4.16) 

is the rate-of-strain tensor of the potential flow. Thus if D is the drag, one has 

DU = / J ,Gd l ‘+ /TT @ d V + 4 , ~ / ~ ~ ”  ?Xi (uiZij)db’, (4.17) 

where 1’ is the space exterior to the sphere. The divergence theorem applied to 
the last tern1 yields 

(4.18) 

where n is the normal to the sphere’s surface S,, drawn into the fluid, and where 
the contributions from a large sphere a t  infinity have been assumed negligible in 
the transformation to a surface integral. We can also put 

DU = fr, Gd V + 0 d  V - 4p Is, wj ui eij d S ,  

IJ7 @ d V  = j @ d F + j  @ d l ’ + S  wake @ d l 7 + 1  exterior @ d V ,  (4.19) 
boundary stagnation 
layer region 
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where 'exterior ' refers to the region of flow outside the boundary layer and wake 
and in which the flow is the basic irrotational flow plus an irrotational secondary 
flow determined by the outflow from the boundary layer and wake. 

The various terms are now estimated. The velocity field of the secondary 
flow was shown in $ 3  to be O(R-P) so that 

n 

J- Odl' = O(R-5).  
exterior 

(4.20) 

Using the estimates given in § 3 for the stagnation region one has 

OdV = O(R+&). (1.21) s stagnation 
region 

Thus one has sr, @ d V  = s O d V t S  cDdT'+O(R-'k-), (1.22) 
boundarr walrc 
layer 

and since the first two integrals are O(R-8) the other regions make no contribution 
to the second approximation to the dissipation. The surface integral receives a 
contribution 0(R-&eL) from that part of X in the stagnation region so that, finally, 

DU = J g 7 a d ~ + J  boundary @ c i ~ + J  15 akc c ~ r l ~ . i i r s ~ ~ n ~ z ~ ~ e , d ~ ,  (4.23) 

where S,  is the portion of the sphere's surface S, covered by the boundary layer. 

layer 

and 4p qo ZTo dh' = 8na U u(0,O) ( - $ sin 8)  sin 8 do. (4.25) 
s2 

These integrals can be evaluated by inserting the solution for u(y,  0) given in $ 2 .  
The dissipation in the wake is slightly more troublesome to calculate. One has 

(4.26) 

where, since the wake is effectively of length a.R&, x = 0 can be taken to be a 
position where the flow is parallel. The integral can be transformed by partial 
integration to yield 

so that, on using the equation of motion (3.31) satisfied by qs, 

and on carrying out the x integration 

(1.28) 

(4.29) 
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From the familiar theory of the asymptotic structure of the laminar wake 

q z - - e x p { - 2 ]  A as z-fco, 
X 

(4.30) 

so that the contribution from x = 00 can be estimated and is readily found to be 
zero. Thus 

(4.31) @d?7 = npu sy m p . L  dm, 
[wake m = O  

and on inserting the expression for qz found in $ 3  one obtains 

The definite integrals involved in (4.24), (4.25) and (4.32) can be evaluated in 
closed form by some lengthy manipulations and one finds that 

or, in terms of the drag coefficient, 

(1.33) 

(4.34) 

5. Comparison with experiment 
The theory presented above predicts that there will be no observable wake 

behind a steadilyrising gas bubble and this suggests comparison with the observa- 
tions of Hartunian & Sears (1957). These workers observed a closed wake con- 
sisting of a singIe vortex ring behind a steadily rising bubble, but remarked that : 
' It is significant that the wake could be seen only in the impure and more viscous 
liquids.' For larger bubbles oscillations occurred which are reminiscent of the 
oscillations of a freely falling solid and which suggest wake instability. Signifi- 
cantly, when bubbles of this critical size were released in distilled water they 
oscillated until the dye used to visualize the flow was shed, from which point 
on the bubbles rose steadily. Now it is well known that small bubbles in impure 
liquids behave as if the bubble surface were solid and Hartunian & Sears suggest 
that the dye contaminated the surface in their experiment. The cessation of 
oscillations once the dye is shed shows that a change in the structure of the wake 
occurs when the bubble surface becomes stress free, although whether or not 
the wake disappears is not established. 

A more direct comparison with experiment is achieved if the theory is used 
to predict the velocities of steady rise of bubbles. Unfortunately, it  is clear that 
the range of Reynolds numbers for which the predictions of $ 4  are applicable is 
very limited since one requires both that R S 1 and RQMj < 1. Furthermore, 
the experimental drag coefficients of Haberman & Morton (1953) are presented 
graphically on too small a scale to permit accurate comparison for this limited 
range of Reynolds numbers. With these facts in mind, (4.34) was used to compute 
velocities of rise for the two pure liquids, Varsol (31 = 4.3 x and methyl 
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FIGUBE 1.  Comparison of velocity of rise computed from (4.34) (upper curve) and from 
Levich's result (lower curve) compared with Haberman & Morton's (1953) experimental 
curve for Varsol (A1 = 4.3 x 10-1"). The point a t  which deformation was first observed is 
approximately indicated. 
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FICVRE 8. Comparison of velocity of rise computed from (4.34) (upper curve) and from 
Levich’s result (lower curve) compared with Haberman & Morton‘s (1953) experimental 
curve for methyl alcohol (41 = 0-89 x 10-lo). The point at which deformation was first 
observed is approximately indicated. 



176 L). W.  Moore 

alcohol ( M  = 0.89 x 10-lo), with the smallest values of M amongst the liquids 
studied by Haberman & Morton. These workers give curves of the velocity of 
rise as a function of radius and the comparison is shown in figures 1 and 3. 

It appears from this comparison that (4.34) is closer to the experimenta1 curve 
than Levich's original result, though the theoretical and experimental curves 
diverge sharply at the larger velocities ofrise. The point at which bubble distortion 
was first observed by Haberman & Morton is indicated and it seems likely that 
the divergence is due to deformation effects. The author hopes to make the effect 
of distortion on the velocity of rise the subject of a future paper. 

The author has benefited from valuable discussions with Prof. A. Acrivos 
and Prof. L. Howarth and is particularly in debt to Dr G. I(. Batchelor for his 
continued interest and advice. 
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